NELSON QMATHS 11 MATHEMATICAL METHODS

FULLY WORKED SOLUTIONS

Chapter 1 Arithmetic sequences and series

Exercise 1.01 Sequences and recursive definitions

Question 1

- **a** 13, 15, 17, 19
- **b** $t_9 = 19, t_{10} = 21, t_{11} = 23, t_{12} = 25$
- **c** $t_{13} = 27, t_{14} = 29, \text{ so } t_{14}$

Question 2

- **a** Add 4: 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44 $\therefore t_{11} = 44$
- **b** Subtract 5: 3, -2, -7, -12, -17, -22, -27, -32, -37, -42

$\therefore t_{10} = -42$

- **c** Odd numbers squared, or add 8, 16, 24, etc: 1, 9, 25, 49, 81, 121, 169, 225 $\therefore t_8 = 225$
- **d** Multiply by 4 4: 3, 12, 48, 192, 768, 3072, 12 288

 $\therefore t_7 = 12288$

а	Add 2:				
	$t_5 = 13, t_6 = 15, t_7 = 17, t_8 = 19, t_9 = 21, t_{10} = 23, t_{11} = 25, t_{12} = 27, t_{13} = 29, t_{14} = 31, t_{15} = 21, t_{16} = 21, t_{16} = 21, t_{16} = 21, t_{17} = 21, t_{18} = 21, t_{18$				
	$t_{15} = 33, t_{16} = 35, t_{17} = 37, t_{18} = 39, t_{19} = 41, t_{20} = 43, t_{21} = 45, t_{22} = 47, t_{23} = 49$				
	$\therefore t_{23}$				
b	Subtract 7: $t_5 = -16$, $t_6 = -23$, $t_7 = -30$, $t_8 = -37$, $t_9 = -44$, $t_{10} = -51$, $t_{11} = -58$				
	$\therefore t_{11}$				
С	Multiply by 3: $t_5 = 81$, $t_6 = 243$, $t_7 = 729$, $t_8 = 2187$				
	$\therefore t_8$				
d	Divide by 5 or multiply by 0.2:				
	$t_5 = 0.0004, t_6 = 0.00008, t_7 = 0.000016$				
	$\therefore t_7$				
Question 4					
а	$t_1 = 5$ b $t_1 = 5 = 3 \times 1 + 2$				

•	
$t_2 = 5 + 3 = 8$	$t_2 = 5 + 3 = 8 = 3 \times 2 + 2$
$t_3 = 8 + 3 = 11$	$t_3 = 8 + 3 = 11 = 3 \times 3 + 2$
$t_4 = 11 + 3 = 14$	$t_4 = 11 + 3 = 14 = 3 \times 4 + 2$
$t_5 = 14 + 3 = 17$	$t_5 = 14 + 3 = 17 = 3 \times 5 + 2$
∴ Sequence is 5, 8, 11, 14, 17,	$\therefore t_n = 3n + 2$

 $t_1 = 12$ d $t_1 = 6$ а $t_2 = 12 - 4 = 8$ $t_2 = \frac{6+4}{2} = 5$ $t_3 = 8 - 4 = 4$ $t_3 = \frac{5+4}{2} = 4.5$ $t_{A} = 4 - 4 = 0$ $t_5 = 0 - 4 = -4$ $t_4 = \frac{4.5 + 4}{2} = 4.25$ ∴ First 5 terms are: 12, 8, 4, 0, -4 $t_5 = \frac{4.25 + 4}{2} = 4.125$ b $t_1 = 12$ $t_2 = 12 \div 2 = 6$: Sequence is 6, 5, 4.5, 4.25, $t_3 = 6 \div 2 = 3$ 4.125 $t_{A} = 3 \div 2 = 1.5$ $t_5 = 1.5 \div 2 = 0.75$ $t_1 = \frac{3}{16}$ е : First 5 terms are: 12, 6, 3, 1.5, $t_2 = 4 \times \frac{3}{16} = \frac{3}{4}$ 0.75 $t_3 = 4 \times \frac{3}{4} = 3$ С $t_1 = 4$ $t_2 = 2 \times 4 - 1 = 7$ $t_4 = 4 \times 3 = 12$ $t_3 = 2 \times 7 - 1 = 13$ $t_5 = 4 \times 12 = 48$ $t_4 = 2 \times 13 - 1 = 25$: Sequence is $\frac{3}{16}$, $\frac{3}{4}$, 3, 12, 48 $t_5 = 2 \times 25 - 1 = 49$: Sequence is 4, 7, 13, 25, 49

a $t_1 = 7$ **d** $t_2 = 7 + 3 = 10$ $t_3 = 10 + 3 = 13$ $t_4 = 13 + 3 = 16$ $t_5 = 16 + 3 = 19$ $\therefore t_n = 3n + 4$

b

$$t_1 = 80$$

 $t_2 = 20$
 $t_3 = 5$
 $t_4 = 1.25$
 $\therefore t_n = \frac{80}{4^{n-1}}$ or $t_n = 80 \times 4^{1-n}$

c $t_1 = 8$

$$t_{2} = \frac{2 \times 8 + 5}{2} = 10.5$$

$$t_{3} = \frac{2 \times 10.5 + 5}{2} = 13$$

$$t_{4} = \frac{2 \times 13 + 5}{2} = 15.5$$

$$t_{5} = \frac{2 \times 15.5 + 5}{2} = 18$$

$$\therefore t_{n} = 2.5n + 5.5$$

e $t_1 = 5$

 $t_1 = 1$

 $t_2 = 8$

 $t_3 = 27$

 $t_4 = 64$

 $\therefore t_n = n^3$

$$t_{2} = \frac{5+4}{2} = 4.5$$

$$t_{3} = \frac{4.5+4}{2} = 4.25$$

$$t_{4} = \frac{4.25+4}{2} = 4.125$$

$$\therefore t_{n} = 4 + \left(\frac{1}{2}\right)^{n-1} \text{ or } 4 + 2^{1-n}$$

a Sequence is 240, 260, 280, ...

 $\therefore t_n = 240 + 20n$

 $\therefore t_8 = 240 + 20 \times 8 = 400$ $\therefore t_{10} = 240 + 20 \times 10 = 440$ $\therefore t_{20} = 240 + 20 \times 20 = 640$

∴ In 8 weeks she will have \$400. In 10 weeks she will have \$440. In 20 weeks she will have \$640.

b 800 = 240 + 20n20n = 560 $\therefore n = 28$ \therefore It will take her 28 weeks.

Question 8

a Sequence is 24, 20, 18, 17, 16.5, 16.25, 16.125, ...

 \therefore In 3 weeks time, will be $16\frac{1}{8}$ s.

b Sequence will continue as 16.125, 16.062 5, 16.031 25, ...

 \therefore As the difference in his times is improving by only half of the improvement he showed in his previous run, the times will approach 16 but never go below 16 seconds. Hence, the best time he can do is 16 seconds.

a
$$t_2 - t_1 = -2, t_3 - t_2 = -2, t_4 - t_3 = -2$$

There is a common difference of -2 for successive terms, so it is an AP.

b
$$t_2 - t_1 = 1 - 2x, t_3 - t_2 = 1 - 2x, t_4 - t_3 = 1 - 2x$$

There is a common difference of 1 - 2x for successive terms, so it is an AP.

c
$$t_2 - t_1 = 0.2, t_3 - t_2 = 0.02, t_4 - t_3 = 0.002$$

The difference of successive terms is not a constant, so it is not an arithmetic sequence.

d
$$t_2 - t_1 = 2, t_3 - t_2 = 3, t_4 - t_3 = 4$$

The difference of successive terms is not a constant, so it is not an arithmetic sequence.

e
$$t_2 - t_1 = \frac{1}{12}, t_3 - t_2 = \frac{1}{12}, t_4 - t_3 = \frac{1}{12}$$

There is a common difference of difference of $\frac{1}{12}$ for successive terms, so it is an AP.

f
$$t_2 - t_1 = 6, t_3 - t_2 = 12, t_4 - t_3 = 24$$

The difference of successive terms is not a constant, so it is not an arithmetic sequence.

a
$$t_2 - t_1 = 4, t_3 - t_2 = 4$$

 $\therefore a = 3, d = 4$
 $t_n = a + (n-1)d$
 $t_n = 3 + (n-1)x + 4$
 $t_n = 4n - 1$
b $t_2 - t_1 = -3, t_3 - t_2 = -3$
 $\therefore a = 102, d = -3$
 $t_n = a + (n-1)d$
 $t_n = 102 + (n-1)x - 3$
 $t_n = 105 - 3n$
c $t_2 - t_1 = -\frac{7}{6}, t_3 - t_2 = -\frac{7}{6}$
f $t_2 - t_1 = 2x - y, t_3 - t_2 = 2x - y$
 $\therefore a = 2\frac{1}{2}, d = -\frac{7}{6}$
 $t_n = 2 + (n-1)d$
 $t_n = 2\frac{1}{2} + (n-1)x - \frac{7}{6}$
 $t_n = \frac{15 - 7n + 7}{6}$
 $t_n = \frac{22 - 7n}{6}$
d $t_2 - t_1 = 2.1, t_3 - t_2 = 2.1$
 $\therefore a = 1.8, d = 2.1$
 $t_n = a + (n-1)d$
 $t_n = 21 - 17$
e $t_2 - t_1 = 2, t_3 - t_2 = 2$
 $\therefore a = -15, d = 2$
 $t_n = a + (n-1)d$
 $t_n = 2n - 17$
f $t_2 - t_1 = 2x - y, t_3 - t_2 = 2x - y$
 $\therefore a = 2x + 3y, d = 2x - y$
 $t_n = 2n + (n-1)d$
 $t_n = 2n + (n-1)d$
 $t_n = 2n + (n-1)d$
 $t_n = 2n + (4 - n)y$
 $t_n = 2n + (4 - n)y$

a
$$a = 2, d = -3$$

 $t_n = 2 + (n-1) \times -3$
 $= 5 - 3n$
 $t_7 = 5 - 3 \times 7$
 $= -16$
 $t_{20} = 5 - 3 \times 20$
 $= -55$
b $a = 3, d = 8$
 $t_n = 3 + (n-1) \times 8$
 $= 8n - 5$
 $t_{11} = 8 \times 11 - 5$
 $= 83$
 $t_{16} = 8 \times 16 - 5$
 $= 123$
c $a = 3x, d = 2x - 2$
 $t_n = 3x + (n-1)(2x-2)$
 $t_9 = 3x + 8(2x-2)$
 $= 19x - 16$
d $a = -2\frac{1}{2}, d = \frac{3}{4}$
 $t_n = -2\frac{1}{2} + (n-1) \times \frac{3}{4}$
 $t_6 = \frac{3x - 6}{4} - \frac{13}{4}$
 $= 1\frac{1}{4}$
 $t_{12} = \frac{3 \times 12}{4} - \frac{13}{4}$
 $= 5\frac{3}{4}$
c $a = 3x, d = 2x - 2$
 $t_n = 3x + (n-1)(2x-2)$
 $t_9 = 3x + 8(2x-2)$
 $= 19x - 16$

$$t_{32} = 3x + 31(2x - 2)$$

= 65x - 62

$$e \qquad a = 0.\overline{4}, d = 0.\overline{2} \qquad f \qquad a = 7, d = -6$$

$$t_n = 0.\overline{4} + (n-1) \times 0.\overline{2} \qquad t_n = 7 + (n-1) \times (-6)$$

$$= \frac{4}{9} + (n-1) \times \frac{2}{9} \qquad t_{20} = 13 - 6n$$

$$t_{20} = 13 - 6n$$

$$t_{20} = 13 - 6 \times 20$$

$$= -107$$

$$t_{30} = 13 - 6 \times 30$$

$$= -107$$

$$t_{30} = 13 - 6 \times 30$$

$$= -167$$

$$t_{9} = \frac{2 \times 10}{9}$$

$$= 2.\overline{2}$$

$$t_{15} = \frac{2 \times 16}{9}$$

$$= 3.\frac{5}{9}$$

Let $t_1 = a$ and common difference = d.

$$a+11d = 16$$

$$a+19d = 5$$

$$(a+19d) - (a+11d) = 16 - 5$$

$$8d = -11$$

$$d = -\frac{11}{8}$$

$$a+11 \times \left(-\frac{11}{8}\right) = 16$$

$$a = \frac{249}{8}$$

$$t_{30} = a+29d$$

$$= \frac{249}{8} - 29 \times \frac{11}{8}$$

$$= -\frac{70}{8}$$

$$= -8\frac{3}{4}$$

Question 5

Let $t_1 = a$ and common difference = d.

$$a+6d = 2.9$$

$$a+8d = 4.7$$

$$(a+8d) - (a+6d) = 4.7 - 2.9$$

$$2d = 1.8$$

$$d = 0.9$$

$$a+6 \times 0.9 = 2.9$$

$$a = -2.5$$

$$t_{16} = a+15d$$

$$= -2.5 + 15 \times 0.9$$

$$= -2.5 + 13.5$$

$$= 11$$

Let $t_1 = a$ and common difference = d.

$$a+3d = x$$

$$a+8d = y$$

$$(a+8d) - (a+3d) = y - x$$

$$5d = y - x$$

$$d = \frac{y - x}{5}$$

$$a + \frac{3(y-x)}{5} = x$$

$$a = x - \frac{3(y-x)}{5}$$

$$= \frac{8x - 3y}{5}$$

 $=\frac{8x-3y}{5}+15\times\frac{(y-x)}{5}$

 $t_{16} = a + 29d$

 $=\frac{12y-7x}{5}$

Question 7

$$a = 3, d = 4.1, n = ?$$

$$200 = 3 + (n-1)4.1$$

$$= 3 + 4.1n - 4.1$$

$$= 4.1n - 1.1$$

$$201.1 = 4.1n$$

$$n = \frac{201.1}{4.1} = 49.04...$$

50th term

(Round up to the nearest whole number if the sum of the sequence is to exceed 200).

 $t_{5} = a + 4d$ $t_{10} = a + 9d$ $t_{20} = a + 19d = 80$ (a + 4d) + (a + 9d) = 80 2a + 13d = 80a + 19d = 80

Solve above equations simultaneously.

$$2a + 13d = 80$$

$$2a + 38d = 160$$

$$(2a + 38d) - (2a + 13d) = 160 - 80$$

$$25d = 80$$

$$d = 3.2$$

$$a + 19 \times 3.2 = 80$$

$$a = 19.2$$

$$t_{30} = 19.2 + 3.2 \times 29$$

$$t_{p} = x \quad \therefore a + (p-1)d = x \quad [1]$$

$$t_{q} = y \quad \therefore a + (q-1)d = y \quad [2]$$

$$[1] - [2]:$$

$$a + (p-1)d - a - (q-1)d = x - y$$

$$(p-1)d - (q-1)d = x - y$$

$$pd - d - qd + d = x - y$$

$$d(p-q) = x - y$$

$$d = \frac{x - y}{p - q}$$

Substitute into [1]:

$$a + (p-1)\left(\frac{x-y}{p-q}\right) = x$$

$$a = x - \frac{(p-1)(x-y)}{p-q}$$

= $\frac{x(p-q) - (px - py - x + y)}{p-q}$
= $\frac{px - qx - px + py + x - y}{p-q}$
= $\frac{-qx + py + x - y}{p-q}$
 $t_n = a + (n-1)d$
= $\frac{-qx + py + x - y}{p-q} + (n-1)\left(\frac{x-y}{p-q}\right)$
= $\frac{-qx + py + x - y + nx - ny - x + y}{p-q}$
= $\frac{-qx + py + nx - ny}{p-q}$
= $\frac{-qx + py + nx - ny}{p-q}$

Let the first term be a and the common difference d.

Then $t_4 = a + 3d = 28$ $t_{16} = a + 15d \le 50$ $t_{17} = a + 16d > 50.$

From
$$t_4$$
, $d = \frac{28-a}{3}$.

Substitute into t_{16} and t_{17} .

Thus $a + 15\left(\frac{28-a}{3}\right) \le 50$ and $a + 16\left(\frac{28-a}{3}\right) > 50$ $a + 5(28-a) \le 50$ and 3a + 16(28-a) > 150 $a + 140 - 5a \le 50$ and 3a + 448 - 16a > 150 $90 \le 4a$ and 13a < 298 $22\frac{1}{2} \le a < 22\frac{12}{13}$

а	There are 10 terms.	d	$a=1\frac{3}{8}, d=-\frac{1}{4}$
	First + last = 73		$t_n = a + (n-1)d$
	$Sum = \frac{10}{2} \times 73 = 365$		$-3\frac{3}{8} = \frac{11}{8} + (n-1) \times \left(-\frac{1}{4}\right)$
b	a = 82, d = -2		$-\frac{27}{8} = \frac{13}{8} - \frac{n}{4}$
	$t_n = a + (n-1)d$		$\frac{-40}{8} = -\frac{n}{4}$
	16 = 82 - 2(n-1)		n = 20
	n = 34		$\begin{pmatrix} 2 & 2 \end{pmatrix}$
	Sum = 17(82 + 16) = 1666		$Sum = 10\left(1\frac{5}{8} - 3\frac{5}{8}\right) = -20$
С	$a = 8\frac{1}{2}, d = 1\frac{5}{2}$	е	a = 9x - 3, d = 1 - 2x
	2 6		$t_n = a + (n-1)d$
	$t_n = a + (n-1)d$		5 - 7x = (9x - 3) + (n - 1)(1 - 2x)
	$36 - \frac{17}{10} + (n-1) \times \frac{11}{10}$		5 - 7x = 11x - 4 + n - 2xn
	$30 = \frac{2}{2} + \frac{1}{2} + \frac{1}{6} = \frac{1}{6}$		9 - 18x = n(1 - 2x)
	$=\frac{40}{6}+\frac{11n}{6}$		$n = \frac{9 - 18x}{10^{-10}}$
	0 0		$n = \frac{1 - 2x}{1 - 2x}$
	$\frac{11n}{6} = \frac{88}{2}$		=9
	6 3 n = 16		Sum = 4.5(9x - 3 + 5 - 7x) = 9x + 9
	a $(a1 a)$ $a=1$	f	<i>a</i> = 16.3, <i>d</i> = 4.9
	$Sum = 8\left(\frac{8-+36}{2}\right) = 356$		t = a + (n-1)d
			94.7 = 16.3 + 4.9(n-1)
			83.3 = 4.9 <i>n</i>
			<i>n</i> = 17
			Sum = 8.5(16.3 + 94.7) = 943.5

a a = -35, d = 3 $S_{30} = \frac{30}{2} [2 \times (-35) + 29 \times 3] = 255$ $S_n = \frac{1000}{2}$ $a = 21, d = -3\frac{4}{5}$ $S_{40} = \frac{40}{2} [2 \times 21 + 39 \times (-3\frac{4}{5})]$ = -2124 a = 12x, d = 2 - x $S_{20} = \frac{20}{2} [2 \times 12x + 19(2 - x)] = 50x + 380$

d
$$a = 1.8, d = 1.3$$

 $S_{60} = \frac{60}{2} [2 \times 1.8 + 59 \times 1.3] = 2409$
e $a = -2.5, d = -2.8$

$$S_{40} = \frac{40}{2} \Big[2 \times (-2.5) + 39 \times (-2.8) \Big]$$

= -2284

f $a = \frac{14}{15}, d = 3\frac{1}{5}$ $S_{50} = \frac{50}{2} \left[2 \times \frac{14}{15} + 49 \times 3\frac{1}{5} \right]$

$$=3966\frac{2}{3}$$

Question 3

$$a = 9, d = 4.5$$

$$S_n = \frac{n}{2} [2a + (n-1)d]$$

$$1000 = \frac{n}{2} [2 \times 9 + (n-1) \times 4.8]$$

$$2000 = n [4.8n + 13.2]$$

$$4.8n^2 + 13.2n - 2000 = 0$$

$$n = \frac{-13.2 \pm \sqrt{(13.2)^2 - 4 \times 4.8 \times -2000}}{2 \times 4.8}$$

$$= \frac{-13.2 \pm \sqrt{38574.24}}{9.6}$$

$$n \approx 19.1 \text{ or } -21.8$$

$$S_{19} = 9.5 [2 \times 9 + 18 \times 4.5] = 940.5$$

$$S_{20} = 10 [2 \times 9 + 19 \times 4.5] = 1055$$

20 terms are needed for the series to exceed 1000.

$$a = -45, d = 6$$

$$S_{n} = \frac{n}{2} [2a + (n-1)d]$$

$$155 = \frac{n}{2} [2 \times (-45) + (n-1) \times 6]$$

$$310 = n [6n - 96n]$$

$$6n^{2} - 96n - 310 = 0$$

$$2(3n^{2} - 48n - 155) = 0$$

$$n = \frac{48 \pm \sqrt{(-48)^{2} - 4 \times 3 \times (-155)}}{2 \times 3}$$

$$= \frac{48 \pm \sqrt{4164}}{6}$$

$$n \approx 18.8 \text{ or } -2.8$$

$$S_{n} = 9 [2 \times (-45) + 17 \times 6] = 108$$

$$S_{18} = 9 \lfloor 2 \times (-45) + 17 \times 6 \rfloor = 108$$
$$S_{19} = 9.5 \lfloor 2 \times (-45) + 18 \times 6 \rfloor = 171$$

19 terms are needed for the series to exceed 155.

Question 5

Need to find the sum of all the positive terms in series.

$$a = 46, d = -6, t_n = 0$$

$$t_n = a + (n-1)d$$

$$0 = 46 + (n-1) \times (-6)$$

$$6n = 52$$

$$n = 8.66...$$

$$t_8 = 46 + 7 \times (-6) = 4$$

$$t_9 = 46 + 8 \times (-6) = -2$$

$$\therefore S_8 = 4 [2 \times 46 + 7 \times (-6)] = 200$$

$$S_{20} = 46, a = 8$$

$$S_n = \frac{n}{2} [2a + (n-1)d]$$

$$46 = 10 [2 \times 8 + 19d]$$

$$190d = -114$$

$$d = -\frac{2}{3}$$

$$S_{30} = 15 [2 \times 8 + 29 \times (-\frac{3}{5})] = -21$$

72 = a + 4d-38 = a + 29d

Solve simultaneously

-110 = 25dd = -4.4 $72 = a + 4 \times -4.4$ a = 89.6

Require
$$S_n < 0$$

 $0 = \frac{n}{2} [2 \times 89.6 + (n-1) \times (-4.4)]$
 $0 = n(183.6 - 4.4n)$
 $n = 0$ or $n \approx 4.7$

 $S_{41} = 20.5 [2 \times 89.6 + 40 \times (-4.4)] = 65.6$ $S_{42} = 21 [2 \times 89.6 + 41 \times (-4.4)] = -25.2$

 \therefore Require a minimum of 42 terms for sum to be negative.

Question 8

$$S_{16} = 92, \qquad S_{20} = 175$$

$$92 = 8[2a+15 \times d] \qquad 175 = 10[2a+19d]$$

$$92 = 16a+120d \qquad 175 = 20a+190d$$

$$35 = 4a+38d$$

Solve simultaneously:

$$92 = 16a + 120d$$

$$140 = 16a + 152d$$

$$48 = 32d$$

$$\frac{48}{32} = d$$

$$d = 1\frac{1}{2}$$

$$35 = 4a + 38 \times 1\frac{1}{2}$$

$$4a = -22$$

$$a = -5\frac{1}{2}$$

$$S_{100} = 50\left[2 \times \left(-5\frac{1}{2}\right) + 99 \times 1\frac{1}{2}\right]$$

$$= 6875$$

$$S_{40} = t_{40}, \quad t_7 = 26$$

$$26 = a + 2d$$

$$S_{40} = 20[2a + 39d]$$

$$t_{40} = a + 39d$$

$$20[2a + 39d] = a + 39d$$

$$39a + 741d = 0$$

Solve following equations simultaneously.

$$(a+6d = 26) \times 39$$

$$39a + 234d = 1014$$

$$39a + 741d = 0$$

$$507d = -1014$$

$$d = -2$$

$$a - 12 = 26$$

$$a = 38$$

$$S_{25} = 12.5 [2 \times 38 + 24 \times (-2)]$$

$$= 350$$

Question 10

$$t_{10} = 18, S_{20} = 280$$

 $18 = a + 9d$
 $280 = 10[2a + 19d]$
 $28 = 2a + 19d$

Solve following equations simultaneously.

$$(a+9d = 18) \times 2$$

$$2a+18d = 36$$

$$2a+19d = 28$$

$$d = -8$$

$$a-72 = 18$$

$$a = 90$$

Let $S_n = 500$

$$500 = \frac{n}{2} [2 \times 90 + (n-1) \times -8]$$

$$1000 = n [180 - 8n]$$

$$8n^2 - 180n + 1000 = 0$$

$$n = \frac{180 \pm \sqrt{(-180)^2 - 4 \times 8 \times 1000}}{2 \times 8} = \frac{180 \pm \sqrt{400}}{16}$$

$$S_8 = 4[2 \times 90 + 7 \times -8] = 496$$

$$S_9 = 4.5[2 \times 90 + 8 \times -8] = 522$$

Check sum of terms until sum falls below 500 again.

 $S_{10} = 540, \quad S_{11} = 550, \quad S_{12} = 552, \quad S_{13} = 546$ $S_{14} = 532, \quad S_{15} = 510, \quad S_{16} = 480$

 \therefore There are 7 terms of the series which exceed 500.

Exercise 1.04: Applications of arithmetic sequences and series

Question 1

a = 20, d = -1 $t_n = 8$ $8 = 20 + (n-1) \times -1$ n = 13 $S_{13} = 6.5 [2 \times 20 + 12 \times (-1)] = 182$

Question 2

a Square numbers are: 1, 4, 9, 16, ...

: Numbers added to give square numbers are: 1, 3, 5, 7, ... (odd numbers)

b

$$t_1 = 1,$$

 $t_2 = 3 = 2 \times 2 - 1$
 $t_3 = 5 = 2 \times 3 - 1$
 $t_4 = 7 = 2 \times 4 - 1$
 $\therefore t_n = 2n - 1$
 $a = 1, \ l = 2n - 1$
 $S_n = \frac{n}{2}(a + l)$
 $= \frac{n}{2}(1 + 2n - 1)$
 $= n^2$

Pentagonal numbers are: 1, 5, 12, 22, 35, ...

 \therefore Numbers added to give square numbers are: 1, 4, 7, 10, 13 ...

$$t_{1} = 1$$

$$t_{2} = 4 = 3 \times 2 - 2$$

$$t_{2} = 5 = 4 \times 1 + 1$$

$$t_{3} = 7 = 3 \times 3 - 2$$

$$t_{4} = 10 = 3 \times 4 - 2$$

$$\vdots \quad t_{n} = 3n - 2$$

$$a = 1, \ l = 3n - 2$$

$$a = 1, \ l = 3n - 2$$

$$a = 1, \ l = 3n - 2$$

$$\vdots \quad t_{n} = 4(n - 1) + 1$$

$$a = 1, \ l = 4(n - 1) + 1$$

$$a = 1, \ l = 4(n - 1) + 1$$

$$a = 1, \ l = 4(n - 1) + 1$$

$$a = 1, \ l = 4(n - 1) + 1$$

$$s_{n} = \frac{n}{2}(a + l)$$

$$= \frac{n}{2}(1 + 3n - 2)$$

$$= \frac{n}{2}(3n - 1)$$

$$= \frac{n(3n - 1)}{2}$$

$$= 2n^{2} - n$$

$$= n(2n - 1)$$

Question 4

Hexagonal numbers are: 1, 6, 15, 28, 45, ...

∴ Numbers added to give square numbers are: 1, 5, 9, 13, 17, 21, … (odd numbers)

a $a = $6000, d = 0.06 \times $6000 = 360

(After 8 years, it will accumulate 7 years of interest.)

$$t_n = a + (n-1)d$$

 $t_8 = 6000 + 7 \times 360$
 $= 8520$

Grown to \$8520.

- **b** Second \$6000 is added one year later.
 - \therefore Savings for 7 years with 6 years' interest.

$$t_8 = 6000 + 6 \times 360$$

= 8160

Grown to \$8160.

c
$$a = 6000, d = 360$$

$$S_n = \frac{n}{2} [2a + (n-1)d]$$

$$S_8 = 4 [2 \times 6000 + 7 \times 360]$$

= 58 080

She has \$58 080 after 8 years.

а	2500 - 1300 = 1200 L in tank after 1.5 hours.
	$\frac{1200}{1.5} = 800 \mathrm{L/h}$
b	11.30 a.m. to 3 p.m. = 3.5 hours
	$800 \times 3.5 = 2800 \text{ L}$
	2500 + 2800 = 5300 L
С	$a = 1300, d = 800, t_n = 7900$
	$t_n = a + (n-1)d$
	$7900 = 1300 + (n-1) \times 800$
	7900 = 500 + 800n
	800n = 7400

n = 9.25

Tank will be full after 9.25 hours = 9 hours 15 min Time = 10 a.m. + 9 hours 15 min = 7:15 p.m.

Question 7

 $a = \$130\ 000, d = -\8500

 $V = 130\,000 - 8500(n-1)$

= 138500 - 8500n

 $t_n = a + (n-1)d$

28000 = 138500 - 8500n

8500n = 110500

n = 13

 \therefore It will take 13 years for the value to fall to \$28 000.

Sequence is 147, 147, 138, 138, 129, 129, 120, 120, ...3

Find sum of sequence 147, 138, 129, 120, ..., 3 and then double the answer.

$$a = 147, d = -9, t_n = 3$$

$$t_n = a + (n - 10d)$$

$$3 = 147 - 9(n - 1)$$

$$3 = 156 - 9n$$

$$9n = 153$$

$$n = 17$$

$$S_{17} = 8.5(147 + 3) = 1275$$

Hence, the dog runs 2×1275 metres = 2550 metres or 2.55 km.

Chapter review

Question 1

a 1, 3, 7, 15, 31, 63, 127, ... (adding 2, then 4, then 8, etc.) $\therefore t_7 = 63 + 64 = 127$ **b** $t_8 = 127 + 128 = 255$ $t_9 = 255 + 256 = 511$ $\therefore t_{10} = 511 + 512 = 1023$

Question 2

a
$$t_1 = 1$$

 $t_2 = 2 \times 1 + 4 = 6$
 $t_3 = 2 \times 6 + 4 = 16$
 $t_4 = 2 \times 16 + 4 = 36$
 $t_5 = 2 \times 36 + 4 = 76$
 \therefore Sequence is 1, 6, 16, 36, 76, ...
b $t_1 = 1 = 5 \times 1 - 4 = 5 \times 2^0 - 4$
 $t_2 = 6 = 5 \times 2 - 4 = 5 \times 2^1 - 4$
 $t_3 = 16 = 5 \times 4 - 4 = 5 \times 2^2 - 4$
 $t_4 = 36 = 5 \times 8 - 4 = 5 \times 2^3 - 4$
 $t_5 = 76 = 5 \times 16 - 4 = 5 \times 2^4 - 4$
 $\therefore t_n = 5 \times 2^{n-1} - 4$

а	4 - 2 = 2, 8 - 4 = 4, 16 - 8 = 8	С	7 - 9 = -2, 4 - 7 = -3, 0 - 4 = -4
	∴ No common difference. Not an AP.		∴ No common difference. Not an AP.
b	9-5=4, 13-9=4, 17-13=4	d	9 - 11 = -2, 7 - 9 = -2, 5 - 7 = -2
	∴ An AP with common difference 4.		\therefore An AP with common difference -2

a
$$a = 14, d = -3\frac{2}{7}$$

 $t_n = a + (n-1)d$
 $t_n = 14 + (n-1) \times -\frac{23}{7}$
 $t_n = \frac{98}{7} - \frac{23n+23}{7}$
b $t_n = \frac{121-23n}{7}$
 $t_n = \frac{121-23n}{7}$
 $t_n = \frac{121-23n}{7}$
 $t_n = \frac{121-23n}{7}$
 $t_{14} = \frac{121-23 \times 14}{7} = -28.7$
 $t_{15} = \frac{121-23 \times 15}{7} = -32$
 $t_{10} = \frac{121-23 \times 10}{7}$
 $\vdots t_{15} = -32$ is the first term below -30.
 $= \frac{-109}{7}$
 $t_n = -15\frac{4}{7}$

$$t_{9} = 28, \quad t_{15} = -6$$

$$a + 8d = 28$$

$$a + 14d = -6$$

$$6d = -34$$

$$d = \frac{-34}{6} = \frac{-17}{3}$$

$$a + 8 \times \left(-\frac{17}{3}\right) = 28$$

$$a = \frac{220}{3}$$

$$a = 21.9, d = 3.1, t_n = 65.3$$
$$t_n = a + (n-1)d$$
$$65.3 = 21.9 + 3.1(n-1)$$
$$= 18.8 + 3.1n$$
$$3.1n = 465$$
$$n = 15$$
$$S_n = \frac{n}{2}[a+l]$$
$$S_{15} = 7.5[21.9 + 65.3]$$

$$t_n = \frac{220}{3} - \frac{17(n-1)}{3}$$
$$= \frac{220 - 17(n-1)}{3}$$
$$t_3 = \frac{220 - 17 \times 2}{3}$$
$$= 62$$

$$a = 2p + 10q$$

$$d = (3p + 8q) - (2p + 10q)$$

$$= p - 2q$$

$$S_{30} = 15[2(2p + 10q) + 29(p - 2q)]$$

$$= 15[33p - 38q]$$

$$= 495p - 570q$$

 $a = 21.5, d = 19.6 - 21.5 = -1.9, S_n > 130$ Let $S_n = 130$. $130 = \frac{n}{2} [2 \times 21.5 - 1.9(n-1)]$ 260 = n [44.9 - 1.9] $260 = 44.9n - 1.9n^2$ $1.9n^2 - 44.9n + 260 = 0$ $n = \frac{44.9 \pm \sqrt{(-44.9)^2 - 4 \times 1.9 \times 260}}{2 \times 1.9}$ $= \frac{44.9 \pm \sqrt{40.01}}{3.8}$ $n \approx 13.5$ or 10.1

Try values of n either side of 10.1 as asked for when series first exceeds 130.

$$S_{10} = 5[2 \times 21.5 - 1.9 \times 9] = 129.5$$
$$S_{11} = 4.5[2 \times 21.5 - 1.9 \times 10] = 132$$

: Require 11 terms.

Question 9

Sequence is: (4×35) , (4×34) , (4×33) , (4×32) , ... or 140, 136, 132, 128, ...

 $\therefore a = 140, d = -4$

15 rows high, therefore t_{15} is the last term in the sequence.

$$t_n = a + nd$$

 $t_{15} = 140 - 14 \times 4$
 $= 84$
∴ $S_{15} = 7.5 [140 + 84] = 1680$

Question 11

Sequence is: 1, 4, 7, 10, 13, ...

$$\therefore a = 1, d = 3$$

$$S_n = \frac{n}{2} [2a + (n-1)d]$$

$$= \frac{n}{2} [2 \times 1 + 3(n-1)]$$

$$= \frac{n}{2} [3n-1]$$

$$= \frac{n(3n-1)}{2}$$

$$t_{8} = \frac{a}{2}$$

$$a + 7d = \frac{a}{2}$$

$$a - \frac{a}{2} = -7d$$

$$\frac{a}{2} = -7d$$

$$a = -14d$$

$$t_{22} = -20$$

$$a + 21d = -20$$

Substitute a = -14d into the above equation.

$$-14d + 21d = -20$$

$$7d = -20$$

$$d = \frac{-20}{7}$$

$$a = -14 \times \left(-\frac{20}{7}\right)$$

$$= 40$$

$$\therefore t_{14} = 40 + 13 \times \left(-\frac{20}{7}\right) = \frac{20}{7} = 2\frac{6}{7}$$

Sum of all numbers between 100 and 1000.

$$a = 100, d = 1, l = 1000$$
$$S_n = \frac{n}{2} [a + l]$$
$$S_{901} = 450.5 [100 + 1000]$$
$$= 450.5 \times 1100$$
$$= 495550$$

Numbers between 100 and 1000 that are divisible by 11 are 110, 121, 132, 143, ...

$$\therefore a = 110, d = 11, t_n < 1000$$
[1] -
 $t_n = a + (n-1)d$
-46
1000 = 110 + 11(n-1)
1000 = 99 + 11n
 $n = \frac{901}{11}$
= 81.9
Use $n = 81$ (round down)
 $S_{94} = S_{81} = 40.5[2 \times 110 + 80 \times 11]$
= 44550
∴ Sum of numbers not divisible by 11 is

495 550 - 44 550 = 451 000

$$S_{21} = 10.5[2a + 20d]$$

$$S_{11} = 5.5[2a + 10d]$$

$$S_{21} = S_{11}$$

$$\therefore 10.5[2a + 20d] = 5.5[2a + 10d]$$

$$10a + 155d = 0 \qquad [1]$$

$$t_{63} = -12 \qquad [2]$$

$$Solve equations [1] and [2]$$
simultaneously.
$$[1] - 10 \times [2] \text{ gives}$$

$$-465d = 120$$

$$d = -\frac{8}{31}$$

$$a + 62 \times \left(-\frac{8}{31}\right) = -12$$

$$a = 4$$

$$S_{94} = 47 \left[2 \times 4 + 93 \times \left(-\frac{8}{31} \right) \right]$$
$$= 47 \left[8 - 24 \right]$$
$$= -752$$

Length of tree with branches = 20.6 - 2 = 18.6 m

Each branch is 0.6 m apart, so the number of branches = $18.6 \div 0.6 = 31$

$$a = 5, t_n = 0.2, n = 31, d = ?$$

$$0.2 = 5 + 30d$$

$$30d = -4.8$$

$$d = -0.16$$

$$S_{31} = 15.5 [2 \times 5 + 30 \times (-16)]$$

$$= 80.6$$

Number of leaves = 80.6×1500

= 120 900 leaves