
PRIOR LEARNING

Vectors

- 1 What is the length of the diagonal of a rectangle of length 5 cm and width 2 cm?
- **2** Find the length of the unknown side in each triangle, correct to one decimal place.

3 Find the unknown side or angle marked in each triangle. Answer correct to one decimal place or to the nearest minute.

- 4 Use the sine rule to find all unknown sides and angles in each triangle.
 - **a** $\triangle PQR$, where $\angle P = 35.3^{\circ}$, $\angle Q = 52.8^{\circ}$ and q = 67.5 cm

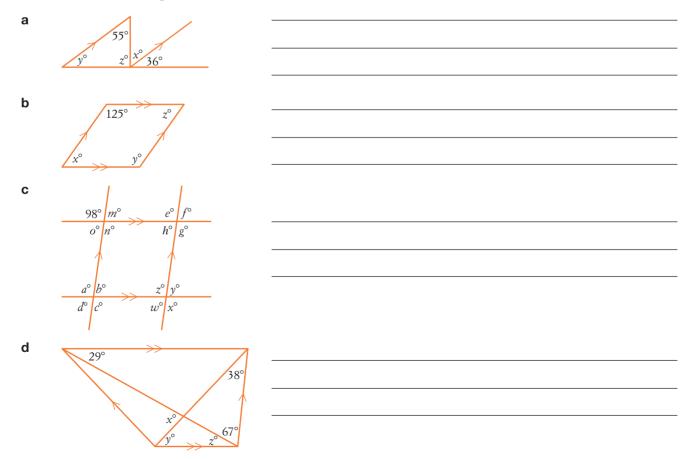
b $\triangle DEF$, where $\angle F = 111^\circ$, f = 12.5 km and d = 8.96 km

c $\triangle ABC$, where $\angle B = 124.1^{\circ}$, $\angle C = 18.7^{\circ}$ and c = 94.6 cm

- **5** Use the cosine rule to find all unknowns in each triangle.
 - **a** $\triangle DAG$, where $\angle D = 121^\circ$, a = 3 m and g = 5 m

b $\triangle UVW$, where $\angle W = 55^{\circ}$, u = 45 cm and v = 50 cm

c \triangle *XYZ*, where x = 7.2 m, y = 12.5 m and z = 8.3 m


6 Use the unit circle to find the exact value of:

a cos (135°)

b sin (300°)

c tan (765°)

7 Find the value of each pronumeral.

Answers

1 5.4 cm **2** a 21.1 m **b** 6.7 m **c** 10.0 cm **d** 48.7 km **3** a *p* = 27.0 **b** $\theta = 30^{\circ} 27'$ **c** x = 32.6**d** m = 39.2**e** $\phi = 36^{\circ} 40'$ **f** $u = 57^{\circ} 59'$ **4** a $\angle R = 91.9^{\circ}$, r = 84.7 cm, p = 49.0 cm **b** $\angle E = 27^{\circ}, \angle D = 42^{\circ}, e = 6.08 \text{ km}$ **c** $\angle A = 37.2^{\circ}$, a = 178.4 cm, b = 244.3 cm **5** a $\angle A = 21.4^{\circ}, \angle G = 37.6^{\circ}, d = 7 \text{ m}$ **b** $\angle U = 56.7^{\circ}, \angle V = 68.3^{\circ}, w = 44.1 \text{ cm}$ **c** $\angle X = 33.4^{\circ}, \angle Y = 107.3^{\circ}, \angle Z = 39.4^{\circ}$ 6 a $\frac{-\sqrt{2}}{2}$ b $\frac{-\sqrt{3}}{2}$ c 1 **7** a $x = 55^{\circ}, z = 89^{\circ}, y = 36^{\circ}$ **b** $y = 125^{\circ}, x = z = 55^{\circ}$ **c** $n = a = c = x = z = g = e = 98^{\circ}, m = o = b = d = w = y = h = f = 82^{\circ}$ **d** $x = 75^{\circ}, y = 46^{\circ}, z = 29^{\circ}$