EVOLUTION OF AUSTRALIAN BIOTA

Chapter 3 Reproduction and continuity of species

Differences between mitosis and meiosis

■ analyse information from secondary sources to tabulate the differences that distinguish the processes of mitosis and meiosis

Linked to page 283

TRCD4.1 A comparison of mitosis and meiosis

	Mitosis	Meiosis
Type of cells in which it occurs	In somatic (body) cells for growth and repair of tissue, replacement of dead cells and asexual reproduction	In cells of sexual reproductive organs to produce gametes (sex cells)
Number of divisions and resulting daughter cells	Single division resulting in the formation of two genetically identical diploid daughter cells	Two successive divisions resulting in the formation of four daughter cells (tetrad), each of which is haploid and genetically different
Chromosome behaviour in the early stages of division—prophase	Replicated chromosomes separate out, but do not form homologous pairs; there is no crossing over and no variation introduced	Replicated chromosomes separate out into homologous pairs (bivalents) which undergo crossing over—they exchange genetic material which increases variation
Chromosome behaviour in anaphase (first division)	Chromatids separate and move to opposite poles	In first anaphase, chromatids remain attached; one entire chromosome of each homologous pair is pulled towards a pole
End of cytokinesis	Two cells produced with identical chromosomes to each other and identical to the original cell	End of cytokinesis II, four cells are produced; each has half the original number of chromosomes and they are not genetically identical to each other