TIMELINE: a short history of biology

		1590	Hans and Zacharias Jansen made the first compound microscope by placing two convex lenses in a tube.
		1663	<i>Robert Hooke</i> introduced the term ' cell ' while observing cork under a light microscope. He also worked at improving a number of scientific devices, including the microscope, telescope and barometer.
		1668	Francesco Redi conducted an experiment to challenge the theory of 'spontaneous generation'.
		1674–1683	 Anton Van Leeuwenhoek, a Dutch lens maker: produced lenses of higher quality, which allowed for greater magnification (up to 200 times). described 'animacules' (unicells) discovered bacteria.
		1758	<i>John and Peter Dollard</i> (father and son), spectacle makers, produced the first achromatic (colour-free) <i>lenses</i> , making microscopes superior to hand lenses.
		1796	Edward Jenner used cowpox in the first successful vaccine against the disease smallpox .
		1801	<i>Robert Brown</i> a botanist and naturalist, first described the cell nucleus while observing plant cells in an orchid. He also noticed the random movement of pollen grains (Brownian motion).
	ory	1836	Charles Darwin arrived in Sydney Harbour aboard HMS Beagle.
	the cell theory	1838	<i>Matthias Schleiden</i> , a botanist , stated that parts of plants are made of <i>cells</i> (not visible to the unaided eye).
		1839	<i>Theodor Schwann</i> , a zoologist , stated that parts of animals are made of <i>cells</i> ; agreed with Schleiden and they published the cell theory in a book, stating that the cell is the basis of the structure of all living things.
		1843	Robert Koch studied the cause of the disease anthrax .
		1855	<i>Rudolph Virchow</i> introduced the idea that cells reproduce by dividing, stating that all living cells can only arise from other living cells, further challenging the theory of 'spontaneous generation'.
	evolution	1856–1858	<i>Gregor Mendel</i> began a series of controlled experiments with garden peas, to carry out a statistical study of heredity .
		1858	<i>Charles Darwin</i> and <i>Alfred Wallace</i> presented a paper 'A Theory of Evolution by Natural Selection '.
	ev	1859	Charles Darwin's book, On the Origin of Species, is published.
		1860	The Huxley–Wilberforce debate takes place.
	isease	1861	<i>Louis Pasteur</i> published his experiments showing that fermentation was caused by something in the air, finally disproving 'spontaneous generation'.
		1862	<i>Louis Pasteur's experiments with bacteria showed that infectious diseases are caused by micro-organisms, leading to the germ theory of disease.</i>
	y of d	1863	<i>Louis Pasteur</i> introduced pasteurisation , a practical application of what he had learnt through his fermentation experiments.
	eor	1866	Gregor Mendel published his work on studying plant hybrids.
	germ theory of disease	1867	Joseph Lister made the connection between Pasteur's work on infection and introduced antiseptic surgery (published paper).
		1880	Charles Louis Alphonse Laveran first identified cause of malaria: a microscopic organism.
		1881	Pasteur developed a vaccine against anthrax.

	disease	1882	Walther Flemming discovered nuclear material—termed 'chromatin material'.
		1882–1893	Koch proposed postulates: 'rules of engagement' for bacteriologists.
		1885	<i>Pasteur</i> used a vaccine against rabies on humans for the first time, saving the life of a young boy who had been bitten by a dog.
		1891	Robert Koch concluded that malaria was transmitted by mosquitoes.
		1897	<i>Ronald Ross</i> demonstrated that female <i>Anopheles</i> mosquitoes were the vectors (carriers) of malaria, by showing that these mosquitoes carried malarial oocysts in their gut tissue.
	genetics	1900	Significance of <i>Mendel</i> 's experiments in terms of heredity is noticed after three other scientists get similar results.
		1902	<i>Walter Sutton</i> and <i>Theodore Boveri</i> independently proposed and demonstrated a connection between chromosomes and inheritance. Sutton studied meiosis in grasshoppers. Boveri studied chromosome behaviour and inheritance in sea urchins.
		1911	Thomas Hunt Morgan studied sex-linked inheritance (Nobel Prize in 1933 for life's work).
		1909	Wilhelm Johannsen introduced the term 'gene'.
	microscope advances, microbes and antibiotics	1928	Alexander Fleming noticed that the mould Penicillium killed bacteria in a petri dish.
		1933	Ernst Ruska built the first electron microscope .
		1935	Howard Florey began to search for a useful medicine to kill germs.
		1938	<i>Fritz Zernike</i> invented the phase contrast microscope which can be used to observe living, unstained cells.
		1939	Howard Florey extracted stable penicillin (the first antibiotic).
		1941	<i>George Beadle</i> and <i>Edward Tatum</i> published the results of their experiments with bread mould, in which they proposed the <i>one-gene-one-enzyme (protein) hypothesis</i> .
		1942	Viruses first seen under the electron microscope.
		1945	Frank McFarlane Burnet isolated influenza A virus (in Australia) and developed a vaccine.
	Ē	1945	<i>Howard Florey</i> and <i>Alexander Fleming</i> received the Nobel Prize for Physiology and Medicine for their work on penicillin.
		1950	Rosalind Franklin and Maurice Wilkins made a crystal of DNA to study its structure.
		1953	James Watson and Francis Crick put together a model of DNA.
	molecular technology, biotechnology and health	1955	Marvin Minsky invented the scanning electron microscope.
		1960	Frank McFarlane Burnet and Peter Medawar received the Nobel Prize for Physiology and Medicine for their work in <i>immunology</i> and <i>organ transplants</i> .
		1962	<i>Vernon Ingram</i> did further work on genes and proteins leading to the change to the <i>one-gene-one-polypeptide hypothesis</i> .
		1962	<i>Watson, Crick</i> and <i>Wilkins</i> received the Nobel Prize for Chemistry for their discovery of DNA. (Rosalind Franklin died in 1958; her work was acknowledged, but Nobel prize nominations cannot be awarded posthumously.)
		1972	Niles Eldridge and Stephen Jay Gould put forward the theory of evolution by punctuated equilibrium.
		1980	WHO declared the disease smallpox eradicated worldwide.
		To present	Genetic and reproductive revolution: in-vitro fertilisation, genetic engineering, cloning and advanced biotechnology.

Note: Dates in many timelines show slight inconsistencies when compared. This is due to inconsistent record-keeping long ago. It is the *sequence of events* that is more important in reflecting the historical developments in science, than the absolute dates.

CONTEMPORARY SCIENCE